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Overview

We accelerate the
conjugate gradient
method using graph 05 39 0
neural networks for 91 - 5
solving large-scale 0 0 0.8
linear equation systems _ _
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» Replace hand-engineered preconditioners for the conjugate gradient method
with outputs produced by a neural network

» Two design requirements for preconditioners:

> Symmetric positive definitness (spd) to ensure convergence
> Sparsity of preconditioner to limit resource requirements

» Output a lower triangular matrix Ay(-) with positive diagonal elements
» Mapping A(-) is parameterized by graph neural network

» The training objective is to predict an incomplete factorization of the matrix A
subject to sparsity constraints:
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» The lower triangular output matrix can be efficiently inverted using
forward-backward substitution
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» Additional non-zero elements can be obtained by relaxing the sparsity
constraint (e.g. allowing non-zeros for A?%)

Graph neural network architecture

.

» The problem matrix A is interpreted as the adjacency matrix of the graph
(Coates graph representation)

» Implicit node ordering by learned factorization

» Message passing is executed in two steps:

> Use the lower triangular part of A for message passing
> Use the upper triangular part of A for message passing

.

» This aligns the network architecture with the problem structure

» An exp(-) activation function on the diagonal elements is used to ensure
positive definiteness

Background: Conjugate gradient method

» Iterative method for symmetric and positive definite (spd) linear equations
» Method of choice for large-scale and sparse problems

» Convergence depends on the spectral properties of the matrix A:
Aax(A)
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» Faster convergence is obtained by solving a preconditioned system:
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where P~! ~ A~! is the preconditioner

k(A) =

» Trade-off between time required to compute the preconditioner P~! and
resulting speedup

» Extreme cases: P! = A~! (direct method) and P~! = I (no speedup)

‘.

» Typical preconditioners are often hand-engineered and domain specitic:
e.g. Jacobi, incomplete Cholesky, multigrid methods
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NeurallF preconditioner Experiments & Results

» Utilize the connection of graphs and sparse
matrices to construct a GNN architecture

» Train the neural network to predict a sparse
factorization of the matrix A which is used as a
preconditioner for the CG method

» Advantages: fast to compute and problem
specific preconditioner

» Synthetic problem: Random matrix AAT + al

» Trade-off between time to compute preconditioner and saved iterations

» Preconditioned CG requires additional matrix multiplications
(Total time = P-time + CG-time)
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Figure: Comparison of different preconditioner performance on 10000 x 10000 matrices

» Poisson PDE: Discretization of the Poisson equation on varying grids

» Generalization to problems up to size 500 000 x 500 000
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Figure: Precomputation and CG-time vs. the number of non-zero elements in the matrix.

» The NeurallF preconditioner is competitive with hand-engineered
preconditioners across different tasks

Summary & Conclusion

» Heuristics allow an easy integration of machine learning and classical
optimization

» Learned optimization requires large amounts of data to be efficient (both
training and amortizing the cost)

» Graph neural networks are natural computational backends for linear algebra
and learned optimization

» Future research includes relaxing the constraints in the optimization problem
and extending the setting to more general iterative methods (GMRES)
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