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Overview

We accelerate the
conjugate gradient
method using graph
neural networks for
solving large-scale
linear equation systems
Ax = b

▶ Utilize the connection of graphs and sparse
matrices to construct a GNN architecture

▶ Train the neural network to predict a sparse
factorization of the matrix A which is used as a
preconditioner for the CG method

▶ Advantages: fast to compute and problem
specific preconditioner

NeuralIF preconditioner

▶ Replace hand-engineered preconditioners for the conjugate gradient method
with outputs produced by a neural network

▶ Two design requirements for preconditioners:
▷ Symmetric positive definitness (spd) to ensure convergence
▷ Sparsity of preconditioner to limit resource requirements

▶ Output a lower triangular matrix Λθ(·) with positive diagonal elements

▶ Mapping Λ(·) is parameterized by graph neural network

▶ The training objective is to predict an incomplete factorization of the matrix A
subject to sparsity constraints:

min.θ EA||Λθ(A)Λθ(A)T − A||F
s.t. Λθ(A)ij = 0 if Aij = 0

▶ The lower triangular output matrix can be efficiently inverted using
forward-backward substitution

▶ Additional non-zero elements can be obtained by relaxing the sparsity
constraint (e.g. allowing non-zeros for A2)

Graph neural network architecture

▶ The problem matrix A is interpreted as the adjacency matrix of the graph
(Coates graph representation)

▶ Implicit node ordering by learned factorization

▶ Message passing is executed in two steps:
▷ Use the lower triangular part of A for message passing
▷ Use the upper triangular part of A for message passing

▶ This aligns the network architecture with the problem structure

▶ An exp(·) activation function on the diagonal elements is used to ensure
positive definiteness

Background: Conjugate gradient method

▶ Iterative method for symmetric and positive definite (spd) linear equations

▶ Method of choice for large-scale and sparse problems

▶ Convergence depends on the spectral properties of the matrix A:

κ(A) =
λmax(A)
λmin(A)

▶ Faster convergence is obtained by solving a preconditioned system:

P−1Ax = P−1b

where P−1 ≈ A−1 is the preconditioner

▶ Trade-off between time required to compute the preconditioner P−1 and
resulting speedup

▶ Extreme cases: P−1 = A−1 (direct method) and P−1 = I (no speedup)

▶ Typical preconditioners are often hand-engineered and domain specific:
e.g. Jacobi, incomplete Cholesky, multigrid methods

Experiments & Results

▶ Synthetic problem: Random matrix AAT + αI

▶ Trade-off between time to compute preconditioner and saved iterations

▶ Preconditioned CG requires additional matrix multiplications
(Total time = P-time + CG-time)
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Figure: Comparison of different preconditioner performance on 10000× 10000 matrices

▶ Poisson PDE: Discretization of the Poisson equation on varying grids

▶ Generalization to problems up to size 500 000× 500000
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Figure: Precomputation and CG-time vs. the number of non-zero elements in the matrix.

▶ The NeuralIF preconditioner is competitive with hand-engineered
preconditioners across different tasks

Summary & Conclusion

▶ Heuristics allow an easy integration of machine learning and classical
optimization

▶ Learned optimization requires large amounts of data to be efficient (both
training and amortizing the cost)

▶ Graph neural networks are natural computational backends for linear algebra
and learned optimization

▶ Future research includes relaxing the constraints in the optimization problem
and extending the setting to more general iterative methods (GMRES)
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