UPPSALA
UNIVERSITET

Neural incomplete factorization:
learning preconditioners for the conjugate
ogradient method

Paul Hiusner!, Ozan Oktem?, Jens Sjolund!

iy

By,
ZKTHS

% VETENSKAP %’

28 OCH KONST 2%
B sl
SRS

'Department of Information Technology, Uppsala University, Sweden
“Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

Overview

We accelerate the
conjugate gradient
method using graph 05 39 0
neural networks for 91 - 5
solving large-scale 0 0 0.8
linear equation systems _ _

Ax =D

24 05 2.1 0

0

» Replace hand-engineered preconditioners for the conjugate gradient method
with outputs produced by a neural network

» Two design requirements for preconditioners:

> Symmetric positive definitness (spd) to ensure convergence
> Sparsity of preconditioner to limit resource requirements

» Output a lower triangular matrix Ay(-) with positive diagonal elements
» Mapping A(-) is parameterized by graph neural network

» The training objective is to predict an incomplete factorization of the matrix A
subject to sparsity constraints:

4] [A0(A)Ag(A)" — AllF

A@(A)i]‘ =0 if Aij =30

» The lower triangular output matrix can be efficiently inverted using
forward-backward substitution

Wlin.g

S.T.

» Additional non-zero elements can be obtained by relaxing the sparsity
constraint (e.g. allowing non-zeros for A?%)

Graph neural network architecture

.

» The problem matrix A is interpreted as the adjacency matrix of the graph
(Coates graph representation)

» Implicit node ordering by learned factorization

» Message passing is executed in two steps:

> Use the lower triangular part of A for message passing
> Use the upper triangular part of A for message passing

.

» This aligns the network architecture with the problem structure

» An exp(-) activation function on the diagonal elements is used to ensure
positive definiteness

Background: Conjugate gradient method

» Iterative method for symmetric and positive definite (spd) linear equations
» Method of choice for large-scale and sparse problems

» Convergence depends on the spectral properties of the matrix A:
Aax(A)

Amin (A)

» Faster convergence is obtained by solving a preconditioned system:

P lAx =P}

where P~! ~ A~! is the preconditioner

k(A) =

» Trade-off between time required to compute the preconditioner P~! and
resulting speedup

» Extreme cases: P! = A~! (direct method) and P~! = I (no speedup)

‘.

» Typical preconditioners are often hand-engineered and domain specitic:
e.g. Jacobi, incomplete Cholesky, multigrid methods

DO
- 1 3
J
.
0.8
G, O3
3.2
NeurallF preconditioner Experiments & Results

» Utilize the connection of graphs and sparse
matrices to construct a GNN architecture

» Train the neural network to predict a sparse
factorization of the matrix A which is used as a
preconditioner for the CG method

» Advantages: fast to compute and problem
specific preconditioner

» Synthetic problem: Random matrix AAT + al

» Trade-off between time to compute preconditioner and saved iterations

» Preconditioned CG requires additional matrix multiplications
(Total time = P-time + CG-time)

w
o

N
Ul

Total solving time in seconds
= N
Ul o

&hH
NeuralPCG NeurallF NeuréIIF-sp
(ours) (ours)

-
o

Ndne Jac'obi IC(O)

Figure: Comparison of different preconditioner performance on 10000 x 10000 matrices

» Poisson PDE: Discretization of the Poisson equation on varying grids

» Generalization to problems up to size 500 000 x 500 000

257 IC(0)

NeurallF (ours)

IC(0)

0.30 1 NeurallF (ours)

20 1 0.25

=
Ul
1
©
N
o

5 @
T 'iﬁ
IW‘

,_ggve (i
. —

| = L "
[

0.5 1.0 15 2.0 2.5 3.0 0.5 1.0 15 2.0 2.5 3.0
Number of non-zero elements le6 Number of non-zero elements le6

Solving time
o
=
ul

=
o
,IA &J

Precomputation time

o
=
o

w1
L
o
o
u

Figure: Precomputation and CG-time vs. the number of non-zero elements in the matrix.

» The NeurallF preconditioner is competitive with hand-engineered
preconditioners across different tasks

Summary & Conclusion

» Heuristics allow an easy integration of machine learning and classical
optimization

» Learned optimization requires large amounts of data to be efficient (both
training and amortizing the cost)

» Graph neural networks are natural computational backends for linear algebra
and learned optimization

» Future research includes relaxing the constraints in the optimization problem
and extending the setting to more general iterative methods (GMRES)

preprint

D40

WALLENBERG Al,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

paul.hausner@it.uu.se, ozan@kth.se, jens.sjolund@it.uu.se



