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Abstract

Pruning of neural networks is one of several techniques that can be used to create sparse

neural networks and to prevent neural networks from overfitting in general. In this thesis,

different types of pruning techniques are compared with each other. Therefore, pruning

techniques in general are divided into pruning strategies, which determine how many

elements are deleted in each pruning step, and pruning methods that rank the weights

based on their importance for the network. The different methods and strategies have

been applied to some fully-connected networks that have previously been trained to a

minimum on the MNIST dataset.

Our experiments have shown that iterative pruning is especially useful if we want to cre-

ate highly compressed networks, while fixed number pruning is able to create the highest

performing ones. In contrast, single pruning is not able to create as good networks as

the other two approaches do. From the different magnitude based methods that have

been applied, the magnitude class blinded approach clearly outperforms the other ones.

The Optimal Brain Damage method, which is based on the second order derivative of

the cost function, performs nearly the same as the magnitude class blinded method,

but with an increasing number of pruning steps the accuracy drops and the additional

needed computations don’t pay off in our experiments. Furthermore, pruning in general

is able to reduce the overfitting in the examined network dramatically and is even able

to outperform other regularization techniques although more computational steps are

required in the pruning approach compared to the other ones.
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1 Introduction

1.1 Motivation

Artificial neural networks are one of the most popular machine learning technologies

these days. The tasks they can solve become more and more complex every day and

with the increasing power the size of the network, meaning the number of neurons and

connections between them, grows as well. A few decades ago, the number of parameters

was fairly small, reaching up to a few hundred-thousand weights in the LeNet300-100

network for example [LeC+98], but nowadays deep neural networks with up to 100 mil-

lion parameters are common, like the VGG-16 network for large scale image recognition

[SZ15]. Therefore, it requires more and more storage capacity to save all the parameters,

and the training and usage of the network becomes increasingly time-consuming.

Recent work has shown that neural networks contain many redundant weights [Den+13].

Therefore, it is possible to delete these unnecessary weights from the network in order

to create a less complex model without experiencing a loss in performance. On the

contrary, it is even possible that the network performs better after some redundant

weights have been removed, since the network is less likely to overfit the training data

[BH89]. Another advantage of removing redundant weights from the network, which

is generally called pruning, is the decrease in complexity and size of the model. The

decreased total size makes it easier to integrate deep neural networks with initially many

parameters on embedded devices like smartphones, which tend to have a limited amount

of computing power and storage [YC16].

On the other hand, the training process takes longer if it is started with a rather small

network that is bearly able to learn the data’s structure [Bur88], and the network is more

likely to end in a local minimum with unsatisfying performance [RHW86]. Therefore,

it is desirable to start the training process with a bigger network than actually needed
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1 Introduction

in order to reach satisfying network performance in a small amount of time and avoid

underfitting.

In comparison to most of the other regularization techniques that also increase the

network’s ability to generalize, pruning can be applied when the network is already

trained [Agg18]. Therefore, it is possible to generate a wide number of different models

with different compression rates and different generalization ability from a single pre-

trained model.

1.2 Research question

In order to reduce the complexity of the model after the training is done, a number of

algorithms have been developed, which try to simplify the model of the neural network

by removing the redundant weights. Each of these so-called pruning techniques tries to

predict which weights can be removed without gaining a significant loss in performance

and eventually calculate the change that needs to be applied to other weights in order to

maintain a small overall error in the network. The algorithms vary in their computational

complexity, the need for retraining, and their possible compression rate of the network

for a desired accuracy [Ree93].

In this thesis, some of the developed pruning techniques are compared with each other.

Therefore, in an already trained fully-connected network the predicted weights are re-

moved and in the following, the performance of the sparse network is measured. The

selection of the to be removed elements is based on evaluations of the weight’s importance

by the pruning method.

The goal of this thesis is to find the pruning technique that achieves the best results in

terms of compression rate, stability, and the out-coming network’s performance. Fur-

thermore, the pruning methods are compared with each other based on their results and

computational complexity in both theory and practice. In addition to the compared

pruning methods, a number of pruning strategies for deleting the weights are used.

Each pruning strategy determines how many elements are pruned in each pruning step

and how many steps are executed. After each pruning step, the network performance is

evaluated and retraining is executed if necessary.

2



1 Introduction

Finally, pruning, in general, is compared with other techniques that try to find the

best network structure and prevent the network from overfitting and are widely used

in modern neural networks. All pruning methods and strategies are only evaluated in

fully-connected feed-forward networks that have previously trained to a local minimum.

Since the research question of this thesis only considers the various pruning techniques,

other methods preventing overfitting, like weight decay or Dropout, are not used for

the initially trained model, since they affect the final structure and the parameter dis-

tribution of the network [HP89; Sri+14]. Some of the examined pruning methods are

based on these parameters of the network as well and therefore, the just mentioned

regularization techniques would affect the pruning procedure unpredictably.

As a baseline comparison in a highly compressed model which still performs well and

was produced using one of the examined pruning techniques, the learned magnitudes of

the weights are reset to a random uniform distribution, and the sparse model is trained

from scratch. Afterward, the from scratch trained model is compared with the one that

has been initially created by the pruning algorithm.
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2 Background

2.1 Introduction to Artificial Neural Networks

The ultimate goal of Artificial Intelligence is to build an algorithm that is able to behave

in an intelligent way. Although there is no exact definition of “intelligence”, humans

are often considered to be intelligent beings. Therefore, it is a logical step to try and

copy the way humans learn and think: with their brain. The human brain is capable of

solving a huge number of tasks that seem very simple for us humans but have shown to

be very complex for machines like image recognition or text processing [RN09].

The human brain is an extremely complex system containing 100 billion processing

units, which are refered to as neurons with up to 100 trillion connections between them

[STK05]. The connections between the neurons, the so-called synapses, and the neu-

rons themselves form a neural network together. Any brain activity involves electrical

signals which are transmitted between the neurons by the synapses until they reach a

designated area. By strengthening or weakening the single connections, the so-called

synaptic plasticity, the brain is able to learn and memorize information. It is even pos-

sible that some synapses are removed and new ones are added [Hug58]. How exactly

the brain is able to process the incoming signals, to learn from them and to remem-

ber the learned information is still not very well understood by the asociated field of

neuroscience. Therefore, this scientific field is a big area of research with the goal of

understanding how the human brain exactly works [Mer].

Although Artificial Intelligence is still far away from reaching human level of perfor-

mance on a lot of tasks, it was accomplished to solve some difficult tasks by developing

algorithms that are inspired by the human brain and in some tasks the algorithms cre-

ated by human engineers even outperform the human brain [Sil+18]. These algorithms

are called artificial neural networks, since they are inspired by the human neural net-

works, and nowadays they are used in a wide variety of fields like image recognition
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2 Background

[KSH12], medical diagnosis [Ama+13], and speech recognition [GMH13] to only name a

few examples.

Artificial neural networks are especially popular in the field of supervised machine learn-

ing, where the machine tries to predict the correct values of samples based on previously

seen similar samples where the right solution was provided to the network [RN09]. In

the following section, the basic blocks of artificial neural networks will be introduced and

how the artificially created “brain” is able to learn from the given examples in order to

correctly predict new samples that the algorithm has never seen before will be explained.

2.1.1 The architecture of artificial neural networks

Just like in their biological role model, the human brain, the basic blocks an artificial

neural network (ANN) is made of are called neurons. During the 1950s already, a special

kind of artificial neuron, the so-called perceptron, was invented by Rosenblatt [Ros58].

A perceptron has a number of inputs x1, ..., xk and a binary output, meaning the output

can either be zero or one. Each input is a binary number as well, but the input xi has

a weight wi attached to it, which indicates how strong and therefore how important the

connection from this particular input is.

The perceptron’s output is one if the sum of the weighted inputs is above some pre-

defined threshold. The threshold of the perceptron can be modeled by another input to

the perceptron, which always takes the value one, and the weight of this particular input

determines the level of the threshold. This additional input, which shifts the threshold

to the desired value, gets called bias b. Therefore, the output of the perceptron can be

expressed in a single equation as follows [Nie15]:

output =

1, if
∑k

i=1wixi + b ≥ 0

0, otherwise
(2.1)

The major pitfall of the perceptron is that its output is always a linear function. Since

most of the real-worlds’ problems are highly non-linear, perceptrons are not able to

model the real-world structure and therefore, it is not suitable as a learning algorithm

for many real-world problems. A popular example is the fact that a perceptron is not

able to learn the XOR function, since it can’t be seperated by a linear line which is

returned by the perceptron’s output function [YBZ02].
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2 Background

In order to overcome the just described issue, a non-linear function can be used in order

to determine the output of the network instead of the linear step function that was used

in the perceptron. The function which is applied to the weighted sum of the inputs a,

that are computed as shown in equation 2.2, gets called activation function.

a =
k∑

i=1

wixi + b (2.2)

As already mentioned, the activation function in a perceptron is the step function, as

defined in equation 2.1, which is one if either the value is equal or bigger than zero and

zero otherwise. A widely used non-linear activation function is the so-called sigmoid

function σ(·), which is defined by the following equation [Nie15]:

σ(z) =
1

1 + e−z
(2.3)

If the previously introduced pieces are put together, the model of a single neuron with

the sigmoid activation function can be built as shown in figure 2.1. The weighted inputs

of the network are summed up and the bias is added. This sum, which forms the

pre-activation value a, is then turned into the output y of the neuron by applying the

activation function to it.

xk

w1

x2

x1

w2

wk
. . . 

∑ σ

a
y

1 

b 

Figure 2.1: The model of a single neuron including the pre-activation value a with k
input variables with weights attached to each of them and an additional bias
term.

At first sight, the sigmoid function that was introduced in equation 2.3 looks quite

different compared to the previously used step function, which had been used in the

perceptron. As shown in figure 2.2 the behavior of the two introduced functions is

actually pretty similar. The only actual difference is that instead of jumping from zero

to one at a certain point, a smooth transition between the two values is created [Nie15].

Beside the two just introduced activation functions, a wide number of other activation
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2 Background

functions exists. The concrete choice of the activation function depends on the given

problem and the network’s desired output and is an important design decision for the

neural network [Agg18].

(a) Sigmoid function (b) Step function

Figure 2.2: Comparison of the sigmoid function (a) and the step function (b), which
are two widely used as activation functions for neurons in artificial neural
networks.

Since the sigmoid function produces a non-linear output, the network is now able to

learn more complex structures in the data. Although later work has shown that the XOR

problem and other tasks that are not linear separable can be solved by using multilayer

networks of perceptrons [YBZ02], neurons with continuous activation functions like the

sigmoid function are preferred nowadays. The reason for this is that it is a lot easier

to train a neuron with non-linear activation functions than training a perceptron. The

learning of a neuron is done by increasing or decreasing the weights of a neuron until the

networks output reaches the desired values, similar to learning in the human brain where

the synapses are strengthened or weakened based on the electrical signals the synapses

have transmitted. In a neuron with a non-linear activation function, a small change in

a weight also leads to a small change in the output [Nie15].

In contrast to the behavior of a neuron, in a perceptron with the step function as its

activation function a small adjustment of a weight either leads to a huge change in the

output, meaning the output switches from zero to one or vice versa, or no change at

all. Therefore, it is a lot easier to find the correct weights and bias that produce the

desired output in a neuron, since it is possible to adjust these values in small steps until

the desired output is reached. This is especially useful if there are too many inputs to

determine the values of the weights that produce the desired output directly.
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2 Background

In order to solve a difficult problem with many inputs, like image recognition, where

every single pixel of the image is an own input to each neuron, many neurons have to

work together by forming a network of neurons. Inspired by the nature, the neurons are

organized in layers. In the input layer the raw input signals are fed. The only task for

the input layer neurons is to feed this received signal to the next layer. The last layer of

the network is called the output layer, since its signals are returned to the user. Because

the user of the network doesn’t see what happens between input and output layer, these

layers get called hidden layers. In figure 2.3 a small multilayer network with two hidden

layers, each containing three neurons is shown [Nie15; Zel00].

a
(0)

1

a
(0)

2

a
(0)

3

a
(0)

4

a
(1)

1

a
(1)

2

a
(1)

3

a
(2)

1

a
(2)

2

a
(2)

3

a
(0)

5

a
(3)

1

a
(3)

2

Input layer Hidden layer Output layer

Figure 2.3: A fully-connected neural network with five input variables, two hidden layers
and two output variables is shown. The bias terms are not shown in order
to maintain readability.

Although the universal approximation theorem states that a network with one hidden

layer and a finite amount of neurons can model nearly any function, architectures with

many layers are common nowadays. The reason for this is that by adding more layers

the total number of parameters might decrease and it gets easier to train the network

compared to a network with a single hidden layer and a huge number of neurons in that

layer [GBC16]. Therefore, deep neural networks with over 100 layers are not uncommon

nowadays [He+16].

Choosing the correct number of hidden layers and neurons in them is still one of the

most difficult tasks in the design of a neural network and therefore, often has to be done

8



2 Background

manually or by determining a good parameter with extensive computing power using

grid search [Nie15]. However, there are also new approaches that try to speed up the

hyper-parameter search like the random search algorithm [BB12].

In order to solve a wide variety of problems with artificial neural networks, a number

of architecture styles, which are used for different types of tasks, have been developed.

In feed-forward networks, neurons from the layer l only receive input from nodes of the

the previous layer l−1 or more general, if shortcuts are allowed, only inputs from nodes

from layers with a lower index are fed into the node. In particular, there are no cyclic

structures in the network, because this would make it way more difficult to train the

neural network and therefore, the network is modeled as a direct, acyclic graph [Zel00].

In fully-connected layers, each node from the layer l has an incoming connection from

each node from the previous layer l − 1, which form the input of the node. The weight

that is connecting node k from layer l − 1 to node m in layer l is called w
(l)
mk. The last

layer, which is the output layer of a network, will be referred to as layer L. It is easy to

see that all the weights that connect layer l − 1 to layer l are forming a matrix, which

is called weight matrix, where each row describes the incoming weights for a single node

from layer l and each column describes the outgoing weights from a single node from

layer l − 1. Furthermore, k(l) denotes the number of output weights in a layer l and

therefore, the weight matrix from layer l has the size k(l) × k(l−1). The vector, which

contains the pre-activation values from the neurons of a layer l, can be expressed as the

matrix product of the outputs from layer l−1, called y(l−1), and the weight matrix which

is denoted by w(l). Therefore, this vector can be calculated efficiently using the matrix

product as shown in equation 2.4 [Zel00].

a(l) = w(l) · y(l−1) (2.4)

One pitfall of feed-forward and especially fully-connected networks for sequential data is

that it is not possible to maintain information between single inputs in the network and

therefore it is not possible to recognize dependencies between the inputs. An attempt

to overcome this issue is to use recurrent neural networks (RNN) which make use of an

internal state in the network in order to solve problems that require high dependency in

the data like text processing or speech recognition. Along with the data that is passed

into the network, the internal state of the previous data piece is added to the network

using a feedback-loop. This enables the network to “remember” the previously seen
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data. However, this additional input leads to a bootstrapping problem, since for the

first input no previously state is available [Agg18; GBC16].

Convolutional neural networks (CNN) are another popular form of feed-forward net-

works which contain convolutional layers that are sparse connected layers following a

strict pattern. The pattern has been adapted from animal brains, where a similar pattern

was discovered in the visual cortex, which is responsible for image recognition [LB98].

Therefore, convolutional networks are used especially in the field of image recognition,

since the sparse structure corresponds to the pixel position in the image, but the tech-

nique has also been transferred to other types of problems. Convolutional networks often

also contain other types of layers like fully-connected layers. Their usage has led to a

huge performance improvement in neural networks [Agg18].

2.1.2 Gradient descent

In order to determine how good the network is currently performing in solving the

desired problem, a measurement of the current error of the network, which gets called

cost function E(·), is needed. The cost function compares the actual output of the

network with the desired one that is available in the dataset for supervised machine

learning problems. Therefore, the cost function shows how big the error is the network

currently is making on a set of provided samples. A popular measurement of the error

is the Mean-Square-Error (MSE) which is defined for a network with a single output as

follows [Nie15]:

E =
1

2n

n∑
i=1

(y − ŷ)2 (2.5)

Here, y is the actual output of the network, ŷ is the desired output given by the dataset,

and n is the number of training examples on which the network’s performance is mea-

sured. The 1/2 factor is added to the error because this leads to a less complex derivation,

which will be shown in section 2.1.3 during backpropagation, and the constant factor

doesn’t affect the optimization term [Zel00]. The cost function from equation 2.5 can be

expanded for multiple output nodes y1, ..., yk by just summing up the error each single

node makes as shown in the following equation:

E =
1

2n

n∑
i=1

k(L)∑
j=1

(yj − ŷj)2 (2.6)
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2 Background

As one can see, the cost function from equation 2.5 is just a special case of the general

cost function from equation 2.6. The final goal of training the neural network is to find

a global minimum of this cost function based on all of the network’s inputs and desired

outputs that are available in the dataset with respect to the variables, which, in this case,

are all the adjustable weights and biases of the network. Since the number of weights

and biases can be extremely high, e.g. over 100 million in the VGG-16 network, it is

computationally not possible to determine the minimum of the function with classical

calculus [SZ15].

Therefore, other techniques to minimize the cost function have to be used. One of the

most used training algorithms for neural networks is the iterative optimization algorithm

gradient descent. The key idea of gradient descent is adjusting the weights and biases

of the network in small steps. These steps are in proportion to the negative of the error

function’s gradient and are executed until a minimum of the cost function is reached

[Zel00; GBC16].

The main difficulty to overcome is how to calculate the partial derivatives for all of

the weights and biases of the network in a traceable fashion. This problem can be

solved using the backpropagation algorithm, which is introduced in section 2.1.3. The

gradient descent algorithm uses the formula from equation 2.7 in order to update the

value of the weight wij, once the associated partial derivative of the cost function has

been computed. Analogous to the update of the weights, the biases are updated as well.

In order to update all variables of the network, the complete gradient of the cost function

has to be computed.

wij = wij − (η · ∂E
∂wij

) (2.7)

The factor η describes the learning rate of the algorithm. The learning rate is needed,

since the algorithm is not able to find a minimum otherwise. The gradient descent al-

gorithm makes use of the fact that the change in the function caused by a parameter

perturbation can be modeled using the derivative in a small surrounding of the current

value. Therefore, the learning rate needs to be quite small in order to keep the approx-

imation close to reality [GBC16]. Typical values for the learning rate are between 10−2

and 10−5. The choice of the learning rate is crucial. If the learning rate is too small, the

optimization might get stuck in a local minimum. On the other hand, if the learning rate

is too big, the global minimum can not be reached, since the algorithm is overshooting

[Nie15].
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Although gradient descent doesn’t provide a guarantee that the global minimum will

be reached, experience has shown that the algorithm often finds a satisfying minimum

[GBC16]. In order to increase the probability that a good minimum is found by the algo-

rithm, the network can be trained with different initial weight and bias values multiple

times, so the final networks can be compared with each other in terms of performance

and the best one can be selected [Pat97].

Figure 2.4 shows how the gradient descent algorithm can find a minimum by taking

small steps in the opposite direction of the gradient. An often used analogy for gradient

descent is imagining a ball that is placed at a spot on the function and it then rolls

downhill until it reaches a local minimum [Nie15].

Figure 2.4: One possible way how the gradient descent algorithm finds the minimum of
the function from a random starting point in R2 (adapted from [Hut18])

.

A popular variation of the gradient descent algorithm is the stochastic gradient descent

algorithm in which, instead of computing the gradient as the mean value of all the

training samples, the gradient is computed in isolation for every training sample and

then the gradient step is executed with this particular gradient vector. This corresponds

to computing the error from equation 2.6 for the parameter n = 1 [Agg18].

Taking only one training example per gradient step is often not enough and it takes a

long time until a minimum is reached, since the algorithm often changes the parameters

in a wrong way for most of the samples. Therefore, a mixture of the both previously

introduced variations, which is called mini batch gradient descent, is often used. In
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this variation of the algorithm, a number of samples from the training dataset, which

is referred to as batch, is used. Typical batches include between 25 and 250 samples

depending on the examined dataset [Agg18]. If the batch size is chosen sufficiently

and the dataset is uniquely distributed, the gradient computed of the batch is a good

approximation of the real gradient for the whole dataset [Nie15].

Since in every step only a small change in the parameters is made, the data has to be

fed through the network multiple times. Each iteration of the complete dataset is called

epoch. In the originaly introduced gradient descent algorithm, each single gradient step

corresponds to a single full epoch [Agg18].

2.1.3 Backpropagation algorithm

In the last section, the gradient descent algorithm, which makes use of the partial deriva-

tives with respect to each weight and bias of the network and is able to minimize the error

of the artificial neural network, has already been introduced. The problem, however, is

how to calculate the whole gradient vector, which consists of all the partial derivatives,

especially the parts of the gradient that are not directly connected to the output of the

network but in the hidden layers. To compute these elements of the gradient vector, the

backpropagation algorithm has been invented [RHW86].

The backpropagation algorithm consists of two phases: the forward phase and the back-

ward phase. In the forward phase, a number of samples from the dataset are fed into

the network and the corresponding error is calculated with the error function as seen

in the previous section. In the backward phase, the gradient of the error function with

respect to the weights and biases is calculated. The single components of the gradient

vector are the partial derivatives of the cost function with respect to each single weight

and bias. The key idea of backpropagation is to firstly calculate the partial derivatives

for the weights that are connected with an output node, since these can be computed

straight forward, and thereupon calculate an error for each node from the hidden layer

that can be used for the derivative calculation for the next layer’s weights and biases.

So the actual error of the network gets propergated back through the network and in

the end, the complete gradient can be computed [Agg18].

For simplicity, it is assumed that the forward phase only contains one single training

sample, like it is the case for stochastic gradient descent. If there were multiple examples,
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the final gradient could be calculated as the sum of the gradients for each single error.

The first step is, as just pointed out, calculating the partial derivative of the cost function

for the weights that are connected to the output. This means all the partial derivatives

for the weights and biases from the output layer L have to be calculated. The partial

derivatives for the weights can be calculated using the chain rule which is leading to the

following formula [Nie15]:

∂E

∂w
(L)
ij

=
∂E

∂y
(L)
i

· ∂y
(L)
i

∂a
(L)
i

· ∂a
(L)
i

∂w
(L)
ij

(2.8)

Now the single parts of the product can be calculated in isolation and later reassembled

into the complete partial derivation. The first part of the derivation can be expanded

as follows by just inserting the definition of the cost function. As previously pointed,

out the 1/2 term that is added to the cost function vanishes during the derivation, as one

can see in the following equation [Nie15; Zel00].

∂E

∂y
(L)
i

=
∂

∂y
(L)
i

· 1

2
(y

(L)
i − ŷi)2 = y

(L)
i − ŷi (2.9)

Since each weight in the output layer only has influence on a single output node its

connection to all other output nodes is irrelevant because they disappear during the

derivation. Therefore, the equation 2.9 remains the same even if there is more than one

output node in the network. The second part of the equation can be simply computed

as follows:
∂y

(L)
i

∂a
(L)
i

=
∂

∂a
(L)
i

σ(a
(L)
i ) = σ′(a

(L)
i ) (2.10)

The derivation of the activation function can be solved easily as we will see later. The

last part of the term can also easily be solved by inserting the formula for the calculation

of the pre-activation value ai:

∂a
(L)
i

∂w
(L)
ij

=
∂

∂w
(L)
ij

·
k∑

n=1

w
(L)
in y

(L−1)
l + b

(L)
i = y

(L−1)
j (2.11)

If the results from the three equations from above are put together, the partial derivative

of the error function with respect to each of the single weights from the output layer

of the network is received and the result of equation 2.8 can be seen in the following

equation:
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∂E

∂w
(L)
ij

= (y
(L)
i − ŷi) · σ′(a

(L)
i ) · y(L−1)j (2.12)

Similar to the calculation of the weight’s partial derivative, the partial derivative for

the bias can be computed. The only difference is in the last part of the product from

equation 2.11 which changes as follows:

∂a
(L)
i

∂b
(L)
i

=
∂

∂b
(L)
i

k∑
l=1

w
(L)
il y

(L−1)
l + b

(L)
i = 1 (2.13)

Therefore, the last term vanishes from the product and the formula for the calculation

of each partial derivative of the cost function with respect to the bias bi is given by:

∂E

∂b
(L)
i

= (y
(L)
i − ŷi) · σ′(a

(L)
i ) (2.14)

In the two final equations, the calculation of the sigmoid function’s derivative is simply

given by the following formula [Agg18]:

σ′(x) = σ(x) · (1− σ(x)) (2.15)

The previously discussed calculation of partial derivatives is with respect only to the

weights and biases that are connected directly to the output of the network. The problem

is that the partial derivative with respect to y
(l)
i can’t be computed directly, since y

(l)
i is

not a direct part of the calculation of the error in the case for a layer l 6= L. In order to

calculate the gradient of the network’s error, the partial derivatives with respect to these

elements of the network have to be computed. The key idea to determine the missing

parts of the gradient vector is to calculate the partial derivative from each element in

the hidden layer l ∈ {1, ..., L − 1} based on the partial derivatives from the previous

layers {l+ 1, ..., L}. Therefore, we want to assign an error to each node from the hidden

layer, similar to the error that was calculated at the output layer of the network. The

error of the node should represent the influence of the examined node’s output on the

final error of the network. This can be achieved by summing up all the weighted errors

from the next layer in the network [Nie15; Ras17].

The proportional error of each node is mathematically calculated as the partial derivative

of each node’s pre-activation value a
(l)
i which can be obtained by applying the multivari-

able chain rule to the cost function. This leads to the following equation for the partial
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derivative of the cost function with respect to the pre-activation value a of node i from

layer l [Agg18]:

∂E

∂a
(l)
i

=
k(l)∑
j=1

∂E

∂a
(l+1)
j

∂a
(l+1)
j

∂a
(l)
i

(2.16)

=
k(l)∑
j=1

∂E

∂a
(l+1)
j

· w(l+1)
ji · σ′(a(l)i ) (2.17)

= σ′(a
(l)
i ) ·

k(l)∑
j=1

∂E

∂a
(l+1)
j

· w(l+1)
ji (2.18)

The partial derivative can be divided into a part that can be solved locally and partial

derivatives from layers which are closer to the output than the current node. For the

unsolved partial derivatives, there are two options: either the layer l + 1 is an output

layer and therefore, the derivation can be solved as explained with equation 2.9 and

2.10, or equation 2.18 has to be used recursively again in order to solve the term. For

either of the two options, the corresponding values have already been computed in

the backpropagation; just as the word “back” suggests, the calculations of the partial

derivatives are started at the output layer L and the values are then propagated through

the network until the input layer is reached [Agg18].

For the calculation of the partial derivatives with respect to the bias terms, the calcula-

tion is analogous as it has already been seen in the previous case for nodes connected to

the output. By putting together the so far achieved results, this leads to the following

formula for calculating the partial derivatives of the cost function with respect to the

weights in the hidden layer:

∂E

∂w
(l)
ij

=
∂E

∂a
(l)
i

· ∂E
∂w

(l)
ij

(2.19)

= y
(l−1)
j · σ′(a(l)i ) ·

k(l)∑
n=1

∂E

∂a
(l+1)
n

· w(l+1)
ni (2.20)

The equation 2.19 is given by the chain rule and the second equation 2.20 is obtained

by applying equation 2.18 and 2.11 that already have been computed earlier.

The backpropagation algorithm works, since the computing graph doesn’t have cycles

and therefore, it is computationally affordable to determine the partial derivatives in a
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recursive way, since all needed values in the recursion step have already been computed

and only need to be summed up. Therefore, it is sufficient to calculate the partial

derivative for each element exactly once [Agg18; GBC16].

By putting together all the just introduced pieces, it is now possible to compute all

partial derivatives with respect to the weights and biases, thus the gradient of the error

function is obtained. Therefore, it is now possible to adjust the parameters in proportion

to this just calculated gradient of the network using the gradient descent algorithm that

has been introduced in section 2.1.2 in order to minimize the cost function.

This calculation of the gradient and subsequent adjustment of the parameters has to

be iterated a number of times until the network’s error is sufficiently small. But since

the goal is to make the network able to correctly predict new samples it has never seen

before, training should be stopped at a certain point. As it will be seen in the next

section, it is more efficient to stop rather early than training too long in order to receive

a network with good generalization performance.

2.1.4 The overfitting problem

The goal of an artificial neural network is to learn the structure in the training data

and after the training is completed to correctly predict new samples the network has

never seen before. In order to test how well a network is able to generalize, meaning

how good the network’s performance is on previously unseen data, the dataset is usually

split into a training part which is used to train the network using backpropagation

or another learning algorithm and a smaller test part which is used to evaluate the

network’s performance on this unseen portion of the dataset. Therefore, the goal of

training a neural network is not only to decrease the error the network makes on the

training set but also to keep the distance between training error and test error as small

as possible [GBC16].

If the network has a too high capacity or is trained for a too long time, the training

error is very small but a high difference between training and test error emerges. This

so-called overfitting problem is one of the most important problems that needs to be

solved in the whole field of machine learning [Agg18]. The overfitting problem especially

occurs if the network has more parameters than needed in order to learn the structure
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in the data, since that’s when it is most likely that the free parameters learn some of

the training data specific structure from the dataset [GBC16].

It is often very difficult to choose the right number of parameters that avoid overfitting

as well as underfitting, where the network is not able to learn the structure of the data.

Therefore, if underfitting occurs, the overall training error does not reach satisfying

performance. The most common cause for underfitting is a too small capacity of the

network which can be caused by a too small number of parameters for example [GBC16].

Since it is very hard to implement counter mechanisms for underfitting, besides of in-

creasing the network capacity by adding more parameters to the network, often a fairly

high number of parameters is chosen and the overfitting problem is tackled by other

techniques which are easier to use [Haw04]. Techniques that try to avoid overfitting and

increase the network’s ability to generalize are called regularization techniques [GBC16].

The previously introduced effect of overfitting can be observed during the training pro-

cess. Although the error on the training dataset keeps decreasing with more training

epochs, the test error quickly increases after a certain point, when the network starts

to overfit the data. This behavior can can be seen in figure 2.5 and the best point to

stop in order to obtain a network with high generalization performance is if the training

error stops decreasing, since at this marked point the network has the best generaliza-

tion ability. The technique of stopping at this particular point is called early stopping.

Because of the simplicity and understandability, early stopping is one of the most used

regularization techniques [Agg18].

Figure 2.5: Comparison of the error the network makes on the trainingset and the vali-
dation set with respect to the number of trained epochs. The best point to
stop the training early is marked (adapted from [Shi+16]).
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The point to stop can either be determined by the current error on the test set or by

introducing a third portion of the dataset, the so-called validation set. Similar to the

test set the validation dataset is not used to train the network but to determine the

point to stop the training. Since this portion of the dataset is not used for training, the

network won’t overfit this data, since it hasn’t been seen by the network so far. The error

on the validation set is used to determine when to stop training and therefore, to find

a good approximation of the early stopping point as shown in figure 2.5 [Pre98]. If the

network has fewer parameters, the chance of overfitting decreases, since the parameters

can’t hold any more information, but as already mentioned, it is very hard to find the

optimal number of parameters and training takes longer if the network is barley able to

learn the data [Agg18].

In order to overcome the overfitting problem, a various number of techniques have been

developed. In L1 and L2 regularization, penalties are added to the cost funcition for high

magnitude weights. This doesn’t only reduce the weight’s sizes but is also an effective

and widely used mechanism to prevent overfitting. Examples for these techniques are

the widely used weight decay [HP89] or the penalty suggested by Chauvin [Cha89].

The pitfall is that these techniques often don’t lead to sparse networks but to models

with many small magnitude weights and therefore, don’t reduce the network size and

complexity [Ree93].

Another type of regularization is the addition of more layers with fewer number of

neurons in each layer, although the total number of nodes might rise the number of

weights decreases and therefore, the network is less likely to overfit the training data

[Agg18]. It is also possible to let one changeable parameter control a number of weights

which is known as weight sharing [NH92]. This obviously reduces the risk of overfitting,

since the number of changable parameters decreases. Dropout and Dropconnect suggest

to drop some weights or neurons randomly during the training but add them back to the

network later again. These two technique increase the accuracy of networks significantly

and are widely used [Wan+13; Sri+14].

Another not that widely used but promising method to prevent overfitting is creating a

sparse networks with few weights either before the training with genetic algorithms for

example [MTH89], during the training with techniques like L0 regularization [LWK18],

or after the training using one of several developed pruning techniques which will be

introduced in detail in section 3.1.
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2.2 Perturbation theory

As known from calculus, every function can be expressed with a Taylor series as an

infinite sum and furthermore, it is possible to expand this series to take small changes in

the input into account. Therefore, it is possible to approximate the change in a function

f(·) if the input in the function gets perturbed by a value ∆x. The Taylor series of the

perturbed function is given by the following equation [Hol13]:

f(x+ ∆x) = f(x) + ∆xf ′(x) +
1

2
∆x2f ′′(x) +O(||∆x||3) (2.21)

This equation can also be transferred to a function with n input variables and a pertur-

bation vector with correspondingly many perturbations. The Taylor expansion for this

multivariable function therefore changes as follows [Hol13]:

f(x1 + ∆x1, ...xn + ∆xn) = (2.22)

f(x1, ..., xn) +
n∑

i=1

∂f

∂xi
·∆xi +

1

2

n∑
i=1

n∑
j=1

∆xi∆xj
∂2f

∂xixj
+O(||∆x||3) (2.23)

The equation above requires the computation of the whole Hessian matrix H, which

contains all second derivatives of a function as you can see in the third term of the

sum. Since the Hessian Matrix requires O(n2) memory and time to be computed, it

quickly becomes unfeasible to compute the complete Hessian matrix. To overcome this

issue, a number of algorithms have been developed to approximate the Hessian, or more

advanced assumptions about the approximation are made.

Often the main interest is the actual change of the output function that is already

minimized and, since the function is currently at a local minimum, the first part of the

sum is equal to zero. Since many error functions are quadratic, the last term can be

dropped, too, which leads to the perturbation error as follows:

δf(∆x) = f(x+ ∆x)− f(x) =
1

2

n∑
i=1

n∑
j=1

∆xi∆xj
∂2f

∂xixj
(2.24)

= ∆xTHf∆x (2.25)

A big disadvantage of the Hessian Matrix is that it requires a lot of memory and comput-

ing power in order to determine it. Therefore, a number of heuristic methods to calculate

20



2 Background

the matrix in reasonable time have been developed. A popular algorithm to approximate

the Hessian matrix is the BFGS algorithm. This algorithm is a Quasi-Newton method

which approximates the Hessian in an iterative way [Fle00].
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Research in neuroscience has shown that when we sleep connections in the human brain

are weakend or even removed which is probably part of the learning process and con-

tributes to the ability to generalize [Viv+17]. Therefore, the goal of pruning algorithms

is to remove neurons from the artificial neural network in order to improve the learn-

ing process in these artificial “brains” as well and furthermore, research in the field of

machine learning has shown that neural networks contain many redundant weights that

might be removed [Den+13]. The initially trained network is fully-connected as shown

in figure 3.1a. Then, some weights are selected and removed from the already trained

network leading to a sparse neural network as shown in figure 3.1b.

(a) A fully connected network (b) The pruned network

Figure 3.1: Comparison of a fully-connected network (a) and a sparse neural network
(b) that can be created from the fully connected network using pruning
techniques.

The research question in this thesis is how to select the correct weights to remove from

the network and how many weights can be removed in order to keep a good performing

network. Therefore, different techniques for selecting the correct weights and stopping

the pruning at the right time have been developed and will be compared in this thesis.

The pruning methods rank the weights from the network and assign a so-called saliency

to each weight. After the ranking is done, some of the weights with the lowest saliency
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are deleted. The ranking of the weights’ saliencies requires O(n · log(n)) steps for a

network with n parameters. The number of the deleted weights is based on the selected

pruning strategy and the deletion can be done in O(n) steps. After each pruning step,

which consists of the weight ranking and the deletion of one to several weights, retraining

might be necessary. It is also possible that no retraining is needed, since the remaining

weights can be adjusted during the pruning step. However, this additional effort often

makes the saliency calculation more expensive.

3.1 Pruning methods

The simplest way to rank the weights and therefore choose which of them should be

deleted from the network is to just randomly pick them. Obviously, this doesn’t lead

to good network performance, since the chance that important weights are deleted is

relatively high. Furthermore, each pruning iteration will create a completely different

network. Although retraining can make up some of the lost information, the random

method often leads to an unsatisfying final model, since it can’t be made sure that

all output nodes keep having a connection to the remaining network, and the overall

network structure gets damaged. Although this method often doesn’t results in a good

performing network, the calculation of the saliency can be done relatively quick by

assigning a random number to each parameter. This requires onlyO(n) steps if a random

number generator which creates random numbers in O(1) is provided. However, due to

its simplicity, random pruning is a good baseline comparison for the other examined

methods.

In order to obtain better networks by pruning, it is desirable to think of other methods

that try to avoid deleting important weights from the network. In the following, different

pruning methods that are based on different criteria will be explored. The common goal

of the pruning techniques is to determine the weights which deletion only causes a small

change or no change at all in the error of the network.

3.1.1 Magnitude based methods

Another simple approach is deleting the weights with the smallest absolute magnitudes.

The main idea is that a small magnitude also results in a small change in the output of
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the network, when the weight is deleted. Unfortunately, research has shown that small

magnitude weights are often responsible for keeping the overall error low in the network

[Bar97]. Therefore, after each pruning step, expensive retraining is required in order to

decrease the error to a sufficient level again.

Beside the retraining issue, magnitude based pruning methods are very popular, since

the computation of their weight saliency is very easy and can be done in O(1) for

the network, since the saliencies have already been calculated by the backpropagation

algorithm. Furthermore, the development of an magnitude based algorithm is very

simple and doesn’t require much additional effort. There are different approaches which

elements will be deleted by magnitude based pruning. The simplest one suggests to

remove the smallest elements from the network regardless of their class, i.e. their layer.

This method is called magnitude class blinded pruning [Mar+18]. Another option is to

delete the same amount of elements from each class, which is generally referred to as

magnitude class uniform pruning method [SLM16].

A slightly more complicated technique is to delete elements from each class in proportion

to the its standard deviation. The key idea behind the latest, so-called magnitude

class distributed method is that in classes with a high standard deviation respectively

more elements get deleted from the network than in ones where the weights are more

similar [Han+15; SLM16]. The problem with this method is how to determine a good

global value, which is called t, in order to reach the desired compression rate in each

pruning step [Mar+18]. The disadvantage of class distributed pruning is that additional

computational effort as well as programming is required in order to calculate the standard

deviation and the necessary global value. Therefore, this magnitude class-distribution

method requires an additional O(n) steps.

3.1.2 Top-Down methods

Since the performance of the network is measured by the accuracy on the test or val-

idation set, it makes sense to develop methods that determine the weight’s saliency

based on the weight’s direct influence on the error of the function. The most promising

approach would be to try out all possible sparse representations of the network and

take the best performing one. Unfortunately, there are 2n sparse networks for an initial

network with n weights. Therefore, the seek for the best network is NP-hard and for

an already small amount of weights it gets computationally completely unfeasible. For
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modern neural networks, with several hundred thousand up to million weights, testing

out all the possible solutions quickly becomes impossible.

Another approach that has already been used but gets unfeasible very quickly for rela-

tively large networks is to delete each weight in isolation and then look which removed

weight resulted in an acceptable change in the error function. Each pruning step requires

O(n ·m) steps, where n is the number of parameters and m the time it takes to evaluate

the network performance, but in each step only one weight can be deleted. Therefore,

if a fixed percentage of elements should be pruned, O(n) pruning steps are required

and therefore in total O(n2 · m) steps need to be executed. It is easy to see that this

so-called Oracle pruning quickly gets unfeasible for modern neural networks with many

parameters [Mol+16].

In order to calculate the saliency of the weights in a traceable and meaningful way,

various techniques to approximate the change of the error have been developed. The

main idea behind these approaches is to use a Taylor approximation to estimate the

change in the cost function. The cost function of the network can be approximated

as seen in section 2.2 and since the network is trained to a local minimum and the

cost function is quadratic, the following equation is obtained for the change of the cost

function by applying equation 2.24.

δE(∆x) =
1

2
·∆xTHE∆x (3.1)

Optimal Brain Damage (OBD), which has been introduced by LeCun et al., furthermore

assumes that the Hessian matrix is diagonal [LDS90]. Therefore, the approximation of

the change in the cost function from the previous shown equation further simplifies to

the following:

δE(∆x) =
1

2

∑
i

[HE]ii ·∆x2i (3.2)

In equation 3.2, the term [HE]ii stands for the diagonal entry of weight i in the Hessian

matrix. The saliency for every parameter can therefore be modeled by the perturbation

in which only the parameter itself is changed and the magnitude of the change is the

negative of the current value. This results in the following formula for the saliency cal-

culation for each parameter k:

sk =
[HE]kk · x2k

2
(3.3)
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For all other parameters, the perturbation is set to zero and therefore, their term vanishes

from the sum. Consequently, only n saliencies have to be computed and the calculation

of these can be done with the suggested algorithm by LeCun et al., which works similar

to the already introduced backpropagation algorithm. Since for practical problems the

Hessian Matrix has shown to be actually highly non-diagonal, a retraining is required

after each of the pruning steps is executed.

Optimal Brain Surgeon (OBS) follows a similar idea as the previously introduced OBD

method, but it doesn’t assume the diagonality of the Hessian matrix and was introduced

by Hassibi et al. [HSW93]. Therefore, it is more complex to compute the saliencies

and for larger networks it is even unfeasible to use. The advantage of OBS is that

the needed adjustments for the other weights of the network are calculated during the

saliency calculation in this method as well and therefore it is not necessary to execute

a retraining after the pruning is finished but rather the weights are adjusted based on

the already computed inverse of the Hessian matrix. The pruning can be expressed as

an optimization problem with a Lagrange condition.

L =
1

2
·∆xTHE∆x+ λ(eTq ·∆x+ wq) (3.4)

In the upper equation, eTq corresponds to the unit vector in the weight space where

the q-th value is one and all other values are zero. The optimization problem minqL

can be solved using the Lagrange multiplier which leads to the following equations for

the saliency calculation and the necessary changes, which are applied to the remaining

weights:

∆xq =
−wq

[H−1E ]qq
·H−1E · eq (3.5)

Lq =
1

2

w2
q

[H−1E ]qq
(3.6)

After the calculation, the lowest approximated change in the error rate Lq is selected to

be pruned and the corresponding weight change ∆xq updates all the remaining weights

in the network. The saliency calculation is nearly the same as in OBD, but instead of

just setting the single weight that should be deleted to zero afterwards, the necessary

change for every other weight is also calculated based on the inverse of the Hessian.

Therefore, no retraining is executed.

The problem is the calculation of the inverse of the Hessian matrix which has to be re-

computed in every single pruning step. This particularly is the biggest pitfall of OBS in
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comparison to OBD, where it is possible, due to the assumption that the Hessian matrix

is diagonal, to prune multiple elements in each pruning step without recomputing the

saliencies that are based on the Hessian matrix. Although an own iterative approxima-

tion algorithm for the inverse calculation of the Hessian matrix has been developed by

Hassibi et al., for modern neural networks with many parameters Optimal Brain Surgeon

gets completely unaffordable in terms of computational time.

3.1.3 Layer-wise methods

Artificial neural networks are tending to get bigger and bigger, meaning the number of

neurons and layers increases. Therefore, it quickly gets computationally unfeasible to

calculate all the saliencies of the weights based on the output of the network as seen in the

previous section. Instead of computing the saliency based on the output of the network,

methods have been developed in order to calculate the saliency based on the output of

the individual layers what reduces the complexity of the calculations dramatically.

Layer-wise Optimal Brain Surgeon (L-OBS) tries to transfer the idea of the previously

introduced OBS algorithm to a layer-wise fashion [DCP17]. Therefore, the Hessian

matrix is not calculated based on the final error of the network but instead calculated

for each layer individually based on a newly introduced layer-wise error. The layer-

wise error indicates how much the output has changed compared to the initially trained

model. By keeping the layer-wise error that is caused by pruning as small as possible,

the change in the final error also stays fairly small.

The calculations for the saliency and necessary weight updates are nearly identical to

the ones already presented in the previous section for OBS. The only difference is that

in L-OBS not the whole Hessian matrix is used but instead the layer-wise computation

of the Hessian. The number of values that have to be computed and the size of the

Hessian matrix therefore decreases dramatically, especially compared to the previously

discussed OBS method. Thus, it is possible to use this method in deep neural networks

that have a lot of layers like VGG-16, which contains up to 50 layers [SZ15].

The first gradient of the network’s parameters can be calculated based on the layer-wise

error. For fully-connected layers, which are surveyed in this thesis, the calculation of

the Hessian matrix is approximated as matrix product from the first order gradient.

Therefore, only the first order gradient has to be computed which is easily computable
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with the previously introduced backpropagation algorithm. Furthermore, layer-wise

OBS allows to prune multiple weights in each step. With these assumptions, every

pruning step is only as expensive as backpropagation. An additional effort that has to

be made in order to calculate the saliencies of the weights is that the original inputs have

to be saved for each layer. Also the final inverse of the Hessian matrix for each layer

has to be stored. However, since the Hessian matrix is only computed in a layer-wise

fashion, the required storage is very limited [DCP17].

There are also other layer-wise pruning methods like Net-Trim, but since they make fur-

ther assumptions like the linearity of the activation function, these will not be considered

in this thesis [ANR16].

3.2 Pruning strategies

The number of elements that are pruned from the network in each step is a critical design

decision of the pruning algorithm. If only a few elements are deleted, the network might

have a better performance, but the model isn’t compressed sufficiently. If too many

weights are deleted, the opposite effect causes problems, meaning the performance might

drop too much even though the network is highly compressed. Furthermore, since many

of the previously introduced pruning methods need retraining after each pruning step is

done, an additional rule for when and how long retraining is executed is needed.

The easiest and fastest way of pruning is to first delete a rather big number of elements

from the network and in advance retrain the network, if necessary, for either a fixed

number of retraining epochs, or make retraining depending on the validation error. This

pruning strategy is called single pruning strategy, since it consists of a single pruning

step followed by necessary retraining.

Another approach, which is referred to as iterative pruning, suggests that a number

of weights is pruned from the network in many consecutive pruning steps [Mol+16].

Between each of the steps, retraining can be executed. In the mot basic form of iterative

pruning, a fixed percentage of weights gets deleted in each pruning step. Plus, there

is also the option to increase or decrease the pruning percentage between the pruning

steps. The advantage of iterative pruning compared to single pruning strategy is that

it might be easier to recover from the deletion of important weights because retraining
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is executed earlier. The main disadvantage of this strategy is that a higher number of

steps need to be executed in order to obtain a given compression rate and therefore, the

pruning procedure takes more time.

A special case of increasing iterative pruning is the so-called fixed number pruning. In

this strategy, a fixed total number of weights is deleted in every pruning step. Since

the total number of weights of the pruned network decreases in every pruning step, the

relative number of pruned elements increases in every step. The disadvantage of the

strategy is that the minimum number of elements is bounded by #w mod #p, where

#w is the initial number of weights in the network and #p is the used pruning rate,

meaning the number of weights that are deleted in every pruning step. Therefore, if

the pruning rate is rather big, it is not possible to achieve high compression rates. On

the other hand, if the pruning rate is very small, it generally is possible to reach high

compression rates, but a huge number of pruning steps is required.

The last approach that is considered in this thesis is the so-called bucket pruning. In

this approach a number of weights is pruned until the total saliency sum of pruned

weights reaches a predefined value. This is especially considerable if the saliency is a

real measurement for the caused change in the error function for pruning methods like

in OBD [LDS90]. Bucket pruning can be executed in either the previously introduced

iterative way or in a single approach.

Pruning strategy Pruning method

Iterative pruning random, magnitude, OBD

Fixed number pruning random, magnitude, OBD

Single pruning random, magnitude, OBD, L-OBS

Bucket pruning OBD, L-OBS

Table 3.1: Overview of the previously introduced pruning strategies and the pruning
methods each strategy is used with.

In all the previously introduced pruning strategies that are listed in table 3.1, either a

fixed number or a variable number of retraining epochs can be used after each pruning

step if retraining is necessary. The number of used retraining epochs and the stopping

criterion have a big influence on the final model as well.
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A special case of pruning is executed in Optimal Brain Surgeon. This pruning method,

which has previously introduced in section 3.1, recalculates the saliency for every single

pruned weight in addition to the required change for all of the other weights [HSW93].

Therefore, this method does not need an additional strategy from this section, since it

is already fixed in the method.

In order to obtain the best possible model from the pruning strategy a fine-tuning is

often executed when the pruning and the normal retraining between the single pruning

steps is finished. In this step, the model is retrained with smaller learning rates again

which increases the chances for the cost function to reach a minimum. Furthermore,

the fine-tuning can make up the information that is not regained during the normal

retraining procedure within the pruning steps.

3.3 Implementation of sparse neural networks

The implementation of the pruning methods and strategies is done in the open source

machine learning framework pytorch1. Since pytorch has no support for sparse neural

networks and pruning yet our own solution had to be implemented on top of the existing

framework.

A new type of linear layer, which contains in addition to the actual weights, a binary

mask matrix m, whose entries indicate if the corresponding weight is still active or is set

to zero by the pruning methods has been developed [SLM16]. This is important, since

weights can also be regularly trained to have a magnitude of zero, but in contrast to

pruned weights, it must be possible to change the magnitude during further training or

retraining after the pruning for these weights. In every forward step, the mask matrix

gets multiplied with the weight matrix using the Hadamard product. The forward path

is therefore expressed as shown in equation 3.7, where m(l) describes the pruning mask

from layer l.

y(l) = σ((w(l) �m(l)) · y(l−1)) (3.7)

Therefore, during the backward phase of the backpropagation algorithm, the gradient of

the pruned weight will be zero as well, since the function that is described by the weight is

now a constant, which vanishes in the derivation. On the other hand, if the value is one,

1pytorch.org
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the function described by the additional computation is the identity, whose derivative

is one. Using the chain rule, this derivative is multiplied with the other parts that have

been introduced in section 2.1.3 and therefore the computation of the derivation remains

correct. Therefore, the deleted weights don’t change during the retraining process, while

the still active weights are correctly updated.

The pitfall of this method is that in this implementation, the storage of the network is not

optimized and, since there is hardware support for matrix multiplications, the actually

deleted weights are multiplied as well. Therefore, neither the storage nor the number of

floating point operations the network requires is decreased by this implementation.
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Initially, a small number of networks is trained until they reach a local minimum on

the MNIST dataset1. Two different initial network architectures are used. The first

architecture has one hidden layer with 100 hidden nodes in it which leads to an overall

number of 79,000 weights. The second network consists of two hidden layers with 300

nodes and 100 nodes in the layers and therefore the number of parameter increases to

about three hundred-thousand. The training process doesn’t contain any further en-

hancements to prevent overfitting like weight decay or Dropout since these can interfere

with the pruning results. Therefore, the initial performance of the trained network is

about 97 percent. The used hyper-parameters are shown in table 4.1 and have been

selected using manual search prior to the actual experiments.

Parameter Used value

Network architecture 784-100-10 and 784-300-100-10

Loss function Cross-Entropy-Loss with Softmax function

Activation function Rectified linear unit (ReLU)

Epochs Up to 200

Optimizer Batch Gradient Descent

Batch Size 64

Learning Rate 0.01 - 0.0001

Table 4.1: The used hyper-parameters for the initially trained network selected using
manual search.

In our experiments, in each execution a pre-trained model is loaded and then pruned with

one of the pruning methods in combination with one of the pruning strategies that have

been introduced in the previous chapter. After the pruning is done, a retraining phase

1http://yann.lecun.com/exdb/mnist/
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is started if necessary and when the retraining is finished, the network’s performance

is measured. The duration of the retraining is based on the validation dataset, or a

fixed number of epochs is used. As previously discussed, the type of applied retraining

is part of the pruning strategy. The whole experiment process can be seen in figure 4.1.

Train Model

Prune
Elements

Retrain
Model 

Evaluate
Performance 

Figure 4.1: The experimen-
tal process

For the iterative pruning strategies, the process is repeated

until the network is too small to prune any more weights

or the accuracy has dropped significantly. As already men-

tioned, for the fixed number pruning, it becomes impossi-

ble to prune any more weights if the weight count is less

than the number of elements that are pruned in each step.

All the measured accuracies from the experiment process

are saved in addition to the current number of non-pruned

weights in the network. Subsequent to the experiments,

the different pruning methods and pruning strategies that

are examined can be compared with each other. Since

the experiments rely on non-deterministic parts, e.g. for

stochastic gradient descent, each experiment is repeated a

number of times in order to achieve meaningful results. Based on the measured accu-

racies, it is now possible to determine which method produces the highest performing

network and which one creates the model with the highest compression rate given a

desired output accuracy. The architecture of good performing networks with a high

compression rate is saved in order to later compare pruning techniques with sparse

models that are trained from scratch. Furthermore, pruning in general can be compared

with other regularization techniques in order to evaluate how suitable pruning techniques

in general are to prevent overfitting.

For neural networks, the found local minimum in the cost function determines how good

the network is performing. There are many different local minima that can be reached

by the learning algorithm and lead to similar network performance as pointed out in

section 2.1.2 [GBC16]. In the following section, the influence of the initially found local

minimum on the pruning results will be examined. Therefore, four independent models

have been trained to a local minimum and pruning was applied to each of them. The

resulting accuracies with the corresponding number of weights of the pruned models

can be seen in figure 4.2. The models are pruned using the magnitude class uniform

method (4.2a) and the magnitude class blinded method (4.2b) in combination with the

iterative pruning strategy, where 50 percent of the remaining weights are deleted from
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the network in each pruning step. After each pruning step is executed, two fixed epochs

of retraining are applied to the network. In order to have meaningful results, the pruning

process is repeated 25 times from scratch for each of the initially trained models.

(a) magnitude class uniform (b) magnitude class blinded

Figure 4.2: Comparison of the accuracy after pruning is applied on four different initial
models for the magnitude class uniform and the magnitude class blinded
pruning methods.

As you can see, the accuracy of the model doesn’t decrease in the first pruning step

and even for the following steps the accuracy doesn’t decrease significantly using the

magnitude class blinded method for all of the examined models. Instead, some of the

models even have a higher accuracy once some of the weights are deleted from the

network. This shows that pruning indeed is capable of preventing overfitting. Although

the absolute accuracy of the initial models on the test set differ significantly from each

other, the general trend is the same for all of the examined models and the accuracy

drops in the same pruning step for the different models. Therefore, in the following,

the experiments will be executed on a single initial model which allows to execute more

repetitions in order to make the outcome of the experiments more significant. The

difference in the two pruning methods that have been examined here as examples will

be analyzed in detail in section 4.2.

4.1 Comparison of pruning strategies

First of all, we want to compare the different pruning strategies that have been intro-

duced in section 3.2 with each other and examine how to choose the parameters for each

strategy. Furthermore, the influence of the retraining process will be evaluated.
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The number of elements that are deleted from the network in each step, the so-called

pruning rate is a crucial decision for all pruning strategies. If the number is too small,

it might take a long time until the network is highly compressed. On the other hand,

if the pruning rate is fairly high, it might be more difficult to create high performing

networks, since the network structure is damaged too much in the individual pruning

steps.

(a) Iterative pruning (b) Fixed number pruning

Figure 4.3: Comparison of the effect of different pruning rates for iterative pruning and
fixed number pruning on the accuracy of the model using the magnitude
class blinded pruning method.

In figure 4.3a, a range of pruning percentages for iterative pruning are compared with

each other. Each pruning rate is tested 25 times in combination with the selected pruning

method. Once again, the general trend of the accuracy is very similar for all percentages,

while the actual performance differs between them. As expected, a smaller pruning rate

also leads to a better performing network, since less information is deleted from the

network and retraining is able to make up the lost information. For small pruning rates,

the network’s performance even keeps increasing until the network reaches a size of

one-quarter of the original network.

Similar to the just examined pruning percentages for iterative pruning, the same variable

needs to be tested on fixed number pruning. In figure 4.3b, the comparison of the pruning

rates for the fixed number pruning strategy is shown. Similar to the iterative pruning,

the smaller the pruning rate, the better the pruned network performs. Although the

two evaluations from figure 4.3 are based on different initial models and therefore the

absolute accuracy cannot be compared, it can be seen that both strategies behave in a

similar way.
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The main theoretical advantage of the iterative pruning strategy is that it combines

the advantages of single pruning and fixed number pruning: It is possible to reach a

high compression rate within a fairly small number of pruning steps but in each step

only a considerably small number of weights are deleted from the network. Therefore,

retraining is applied regularly and the network is able to regain the lost information just

like in the fixed number pruning.

In figure 4.4, iterative and fixed number pruning are compared with each other. For

the shown comparison iterative pruning with a pruning percentage of 25% and single

pruning with a pruning rate of 5,000 is used. These numbers have been selected, since

they allow us to generate a highly compressed model relatively quickly and the number

of required pruning steps until 500 weights are reached is similar to each other: iterative

pruning requiring 17 pruning steps and fixed number pruning requiring 15 steps using

the introduced pruning rates. For each of the pruning strategies, the experiment is

repeated 25 times in order to not only analyze the general performance but also the

stability of the strategies.

Figure 4.4: Comparison of fixed number pruning with iterative pruning using the mag-
nitude class blinded pruning method and two fixed epochs of retraining after
each pruning step.

As you can see, the fixed number pruning strategy clearly outperforms the iterative

pruning strategy in nearly every single pruning step based on the overall performance of

the outcoming network. Especially the generalization ability of fixed number pruning is

a lot higher. The first time iterative pruning is capable of competing with fixed number

pruning is when the accuracy has already dropped significantly. However, iterative

pruning is capable of creating much smaller models. While the smallest model that
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fixed number pruning can create still contains 4,900 weights, due to the theoretical

limitations of the algorithm, iterative pruning is able to create models with only around

2,000 weights and a performance loss of only 1% compared to the original model. In

terms of stability, both algorithms behave nearly the same and also, the variance doesn’t

increase for later pruning steps.

For more advanced pruning methods, the calculation of the saliency might take several

hours and for big networks it is even possible that it takes days until the calculations are

finished. Therefore, it is desirable to reduce the number of required saliency calculations

to a minimum. The most extreme option that has been introduced is the single pruning

strategy, where the saliencies of the weights only have to be calculated exactly once.

In figure 4.5, the single pruning strategy is compared with iterative pruning and fixed

number pruning. Single pruning is executed with a pruning rate of 85%. This leads to

a model with around 12,000 weights. For fixed number pruning, a pruning rate of 5,000

weights is used and the displayed accuracy is measured after 14 pruning steps which leads

to a model that contains 9,400 remaining weights. For the iterative pruning strategy,

a rate of 25% is used and the accuracy is measured after 7 steps when the model has

reached a weight count of around 10,500. Each pruning strategy is tested 25 times. For

fixed number pruning and iterative pruning, two fixed epochs of retraining are applied

like it has been done in the previous experiments. However, for single pruning, the loss

that is caused by pruning is a lot higher and therefore more retraining is required. Thus,

variable retraining with a maximum of 20 epochs is applied for the single strategy.

Figure 4.5: Comparison of the single pruning strategy with iterative pruning and fixed
number pruning. All evaluated models had a weight count around 10,000.
For this experiment the magnitude class blinded pruning method is used.
The network performance is evaluated before and after the retraining was
applied to the model.
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As previously seen, the fixed number pruning strategy outperforms iterative pruning

after retraining is applied. However, the initial performance of the network after pruning

is better for the iterative pruning strategy, but in comparison to this strategy, fixed

number pruning is capable of regaining more of the lost information during the retraining

process. As expected, the two strategies outperform single pruning, since in each pruning

step they only have a limited loss and with the occasional retraining, the network is

able to regain the lost information better. In the single strategy, the non-retrained

model obviously always has the same initial accuracy, since the pruning is executed

in a deterministic way. Nevertheless, the final accuracy of the single pruning strategy

has the highest variation. Due to the large amount of retraining, the used gradient

descent algorithm is not always able to find a satisfying minimum of the cost function.

In contrast to this, in iterative and fixed number pruning the initially pruned models

vary quite a lot, but the final accuracy is much more stable, since a fixed number of

retraining epochs is always applied.

However, the difference between the examined pruning strategies is relatively small and

the single strategy is a good choice for methods where it is computationally hard to

calculate the saliencies or it requires a lot more programming effort to calculate the

saliency for sparse models, which is the case for methods like layer-wise OBS. However,

the variable retraining after the pruning that is executed leads to a lower stability of the

pruning procedure, but a single pruned sparse model might get retrained various times

in order find a satisfying minimum in the loss function similar to the repeated training

of the initial model.

The remaining bucket pruning strategy behaves very similarly to the already examined

single strategy. The only actual difference is that instead of testing out various pruning

rates which indicate the number of elements that are pruned, in bucket pruning the

pruning rate indicates the expected minimum loss in accuracy. However, it only makes

sense to use this strategy with a very limited number of pruning methods.

Previous experiments have shown that two epochs of retraining already restore a high

fraction of the lost information during pruning. Furthermore, if the pruning rate is small

enough, another retraining phase will follow in a short amount of time. In the following

paragraph we will examine the influence of more retraining on the network. Therefore,

instead of using two fixed epochs of retraining, variable retraining is applied which allows

the network to recover the lost information better. The retraining will be stopped based
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on the error on the validation set. If the accuracy on the validation set stops increasing,

retraining is stopped, otherwise it is continued up to a maximum of 10 epochs.

The two pruning procedures that are shown in figure 4.6 use iterative pruning with a

pruning percentage of 50% in each pruning step. The experiment is repeated 25 times

due to the non-deterministic behavior of the algorithm.

(a) magnitude class uniform (b) magnitude class blinded

Figure 4.6: Comparison of the effect of the variable and two epochs fixed retraining on
the accuracy of the model with different pruning methods. As a baseline the
non-retrained accuracy is shown.

As expected, the accuracy is a bit higher if variable retraining is applied. With variable

retraining, the network is able to react better to the lost information and prevent over-

fitting as well as underfitting during the retraining. However, the general progression

of the accuracy of the retrained network remains the same for both fixed and variable

retraining and compared to the non-retrained version of the network, both of the ap-

proaches make up most of the due to pruning lost information. The advantage of fixed

retraining is the limited and expectable time consumption in comparison to the variable

retraining process. Furthermore, it is possible to add a fine-tuning to the end of the

process that is displayed in figure 4.1 which might be able to reduce the gap between

the two examined retraining approaches.

4.2 Comparison of pruning methods

As seen in the previous chapter, the different pruning strategies pretty much behave as

we would expect them to. Therefore, the choice of the pruning strategy highly depends
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on the available time and computing power as well as the desired outcome. In this

chapter we want to compare the different used pruning methods in order to determine

which one is able to produce the best performing and most compressed networks.

The network’s performance is measured after retraining as well as before the retraining

takes place. Therefore, we can compare the performance of the pruning methods for

both: before and after the retraining took place. As previous seen, two fixed retraining

epochs are able to restore most of the information that has been lost during pruning.

Furthermore, fixed retraining is less time-consuming and thus the pruning procedure

gets sped up. Therefore, in the following, we will use the fixed retraining approach. As

a baseline for all of the method comparisons random pruning is used. If the accuracy of

the final model should be improved, a fine tuning step can be applied after the pruning

is done. In this step, the model is retrained with a decreasing learning rate again.

First of all, we want we compare the different pruning methods using the fixed number

pruning strategy and the iterative pruning strategy. Therefore, the initial model is

pruned using the different methods and the whole pruning process is repeated 25 times.

As we have seen in the previous section, the smaller the pruning rate, the higher the

performance of the created network. However, a compromise between runtime of the

pruning procedure and the outcoming performance needs to be made. Therefore, in the

following, we will use pruning rates between 1,000 and 10,000 for fixed number pruning

and between 25% and 50% for iterative pruning, since these create good performing

models in an acceptable number of pruning steps.

(a) Iterative pruning (b) Fixed number pruning

Figure 4.7: Comparison of the different used pruning methods in combination with fixed
number pruning with a pruning rate of 5,000 and iterative pruning with a
pruning rate of 25%.
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In figure 4.7, we can see the differences between the five pruning methods that are

used for fixed number pruning: magnitude class blinded, magnitude class distributed,

magnitude class uniform, Optimal Brain Damage, and as a baseline comparison random

pruning. In figure 4.7a, the different pruning methods are tested using the iterative

pruning strategy and in 4.7b the fixed number pruning strategy is used. As expected,

the random pruning method comes of as the worst of the examined methods for both of

the examined strategies. Interestingly, magnitude class blinded pruning outperforms the

other two magnitude based pruning methods clearly and is at least as good as Optimal

Brain Damage, which requires a way higher effort to calculate its saliencies. For higher

compression rates, it even outperforms Optimal Brain Damage clearly. Furthermore it is

noteworthy that the two methods start to move apart when the network reaches about

30,000 weights. In order to further analyze the two just mentioned best performing

pruning methods, they are compared directly with each other in figure 4.8.

In figure 4.8b, you can see that during the first few pruning steps the two methods

perform nearly the same, but especially in the first pruning step OBD performs slightly

better. After a few pruning steps, OBD isn’t able to improve the accuracy of the

network any more, in contrast to the magnitude method. In contrast to the nearly same

performance of the two examined pruning methods after the retraining, the untrained

performance of the model can be compared in figure 4.8a. In this case, Optimal Brain

Damage clearly outperforms the magnitude based approach. Thus, although the initial

performance of OBD after the pruning is better, the method is not able to regain as

much information from the retraining procedure as the magnitude based approach is.

(a) Before retraining is applied (b) After retraining is applied

Figure 4.8: Comparison of Optimal Brain Damage and magnitude class blinded prun-
ing methods in combination with the fixed number pruning strategy using
a pruning rate of 5,000. The methods are compared before and after the
retraining is applied.
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Layer-wise OBS was only tested using single pruning, since the calculation of the inverse

of the Hessian matrix is based on heuristic algorithms that only work for full matrices.

Therefore, the reference implementation of the algorithm2 could be used [DCP17]. In

figure 4.9, L-OBS is compared with the other examined pruning methods. For this

experiment, a pruning rate of 80% is used. The network’s performance is measured

before the retraining took place as well as after the retraining is executed. The number

of retraining epochs is based on the error on the validation set, thus early stopping is

used, but the total number of epochs is limited to 25.

You can see that the magnitude class blinded method and Optimal Brain Damage only

suffer a very small loss due to pruning that can even be further reduced by the applying

retraining. In comparison, the magnitude class uniform, magnitude class distributed,

and L-OBS suffer a way bigger change in the error due to pruning. Interestingly the two

magnitude based approaches are able to recover from the loss pretty well and regain an

accuracy of around 95%. In contrast, L-OBS is not able to recover from the pruning

procedure and fairly reaches an accuracy of 93% after retraining is applied, although

the performance before the retraining is applied is higher than in the two magnitude

based approaches. Although the initial performance of the network that is pruned using

L-OBS is nearly three times as high as the one created using random pruning, the

post-retrained randomly created model outperforms the other one that uses a way more

advanced technique.

Figure 4.9: Comparison of the accuracy of magnitude class blinded (MCB), magnitude
class distributed (MCD), magnitude class uniform (MCU), Optimal Brain
Damage (OBD), layer-wise OBS (L-OBS), and random pruning methods in
combination with the single pruning strategy before and after the retraining
is applied.

2https://github.com/csyhhu/L-OBS
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4.3 Baseline experiment

As already seen, pruning techniques are able to generate models that are highly com-

pressed but still have a very high accuracy on the test dataset. In this section, we will

have a look at how pruning techniques are able to compete with other regularization

techniques and other kind of techniques to generate sparse models.

The accuracies of the models that have been generated with the pruning techniques will

be compared with sparse models that are trained from scratch. The best performing

model that has been created by a pruning algorithm was generated using the fixed

number pruning strategy with a pruning rate of 1,000 in combination with the magnitude

class blinded pruning method. This pruned model has 13,400 weights which corresponds

to 16.8% of the original weight count. The accuracy of the original model before the

pruning is 97.29% and the pruned version has an accuracy of 98.01% before fine-tuning

is applied, which corresponds to a raise in the accuracy of 0.72%.

In figure 4.10, the accuracy of the previously introduced model that is created using

pruning is compared with the original model and other created models. For each of the

tested models, the network was trained 10 times and the best result is shown in the

figure. In order to further improve the generalization performance, early stopping with

a decreasing learning rate is used.

Figure 4.10: Comparison of the model’s accuracy in different settings: the original non-
pruned model, the pruned model, the fine-tuned version of the pruned model
and the created sparse model trained from scratch.

As you can see, pruning is indeed capable of reducing the overfitting that was contained

in the original model. Furthermore, the pruned model only contains 13,400 weights
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which corresponds to a compression rate of nearly 85% compared to the original model.

However, if we train a sparse model with the same network structure as the created

one, the accuracy of this model is significantly lower than both: the original model

and the one created by pruning. This shows that pruning is capable of creating highly

compromised models that still have a very high accuracy. It is not possible to create

these models directly.

By applying a fine-tuning step, the accuracy of the model does not really change and the

best achieved performance is 98.02%. This shows that although a small fixed number of

pruning steps, in our case only two epochs, is used, the pruning procedure is still able

to find a very good minimum in the cost function. Thus the network doesn’t require

further improvement.

In figure 4.11, the pruned model is compared with other popular regularization tech-

niques. The models are trained using early stopping in combination with a decreasing

learning rate over time in order to also achieve a good generalization performance. Each

of the techniques is executed 10 times and the best performing model is shown in the

graph.

Figure 4.11: Comparison of the original and pruned model with models created using the
popular regularization techniques weight decay and Dropout. The goal of
all three compared techniques is to improve the generalization performance
of the network.

For the L2 regularization technique weight decay, a λ value of 0.0008 is used and a

Dropout layer is added to the hidden one with a drop probability of 0.5. The values

have been selected using a combination of grid search and manual search. The same

initial architecture and the same hyper-parameters for training as described previously
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in table 4.1 are used. As you can see, the two examined regularization techniques are

both able to create a network that has a higher accuracy than the originally created one,

but both examined methods don’t reach the level of performance that was reached by

pruning. This shows us that pruning has a very high regularization ability, while also

creating a highly compressed model.

All the previous experiments have been executed on a network with initially 79,400

weights. In order achieve meaningful results, various versions of iterative pruning are

also executed on a network that has a different initial architecture. The architectures

of the models have already been described in the introduction to this chapter and are

summed up in table 4.1. The new model contains two hidden layers with 300 and 100

neurons in each of them. Therefore, the initial number of weights increases to nearly

300,000. With more weights in the initial network, the redundancy of the information

might also be higher; therefore, it is possible to achieve higher compression rates. Thus,

the comparison of the architectures need to be based on the actual number of weights in

the created networks. In figure 4.12, the accuracies of the two introduced architectures

are compared with each other. Each model is pruned ten times with each of the pruning

methods and after each pruning step two epochs of retraining are applied.

(a) 784-300-100-10 (b) 784-100-10

Figure 4.12: Comparison of the performance of the two used architectures using iterative
pruning with a pruning rate of 50% and a number of different pruning
methods. The smaller model (b) has initially 79,400 weight while the bigger
model (a) contains initially 266,200 weights.

In figure 4.12b, the performance of the smaller model that was also explored in the last

sections is shown. In comparison, the performance of the bigger model with two hidden

layers is shown in figure 4.12a. Each model is pruned using the different shown pruning
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methods in combination with the iterative pruning strategy with a pruning rate of 50%.

As you can see, the general behavior of the pruning methods stay the same for both of

the examined architectures.

Furthermore, since the bigger model contains more total weights, there also are more

redundant ones in the network. Therefore, it is possible to delete more total weights

without a significant loss in performance. In both cases, the performance drops between

the second and fourth pruning step, but since in iterative pruning the total amount of

pruned elements is depending on the total weight count, in the bigger model a much

higher compression rate can be achieved. Unsurprisingly, random pruning is not able

to create a good performing model because during pruning a lot of important weights

are deleted. In the bigger model, Optimal Brain Damage has a very clear advantage

during the first few steps but then falls short compared to the magnitude class blinded

method. The performance of the other two magnitude based methods nearly stays the

same, but while in the smaller model the magnitude class distributed method has a

slight advantage in the new model they nearly perform the same way. Compared to the

previously seen experiments, the stability of the pruning methods seems higher, however

this is only caused by the lower number of repetitions.
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In the previous chapter the outcome of the executed experiments has been presented. In

the following sections the results from the previous chapter will be discussed. First of all

the different compared pruning methods and pruning strategies which are summed up

as pruning techniques will be discussed and in the following pruning as a regularization

technique will be evaluated.

5.1 Comparison of pruning techniques

As seen in the previous chapter all the pruning methods that have been tested clearly

outperform the baseline random pruning method. Therefore, all the presented pruning

methods indeed find weights that can be deleted without gaining a significant loss in

performance.

Previous research has already compared the different magnitude based approaches that

are also compared in this thesis. In figure 5.1 our achieved results are compared with

the results published by See et al. [SLM16]. In figure 5.1b the results from the previous

chapter are shown. The graph shows the accuracy for the model that was pruned using

the iterative pruning strategy with a pruning rate of 25%. Instead of using the total

number of weights on the x-axis the compression rate is used which is just the current

number of weights divided by the original number of weights in order to make the results

comparable. As you can see in both of the experiment series the magnitude class blinded

pruning method outperforms the other ones. However, in the results published by See

et al. magnitude class uniform and magnitude class distributed perform nearly the same

way, while in our experiments magnitude class distributed performs a little bit better

than the other approach. The reason for this might be that we used a different initial

model and more repetitions of the experiment. Furthermore, the saliency calculation of
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magnitude class distributed is more advanced and therefore it seems to better select the

deletable weights. Moreover, in the results achieved by See et al. that are displayed in

figure 5.1a the single pruning strategy is used. As we have seen in the previous chapter

the pruning can be improved significantly by applying iterative pruning with e.g. a

fixed number or a fixed percentage of elements deleted in each pruning step. This allows

to create much higher performing networks since retraining is applied more regularly.

Therefore, our network is able to increase the overall performance of the network and

thus reduce the overfitting in the network, the network pruned by See et al. is not.

Another reason for the different performance might be the different initial architecture

since in our experiments fully-connected networks are surveyed in contrast to the RNNs

that are surveyed by See et al. Due to the different architectures of the networks and

the more efficient pruning strategy in our experiments we are able to create higher

compressed networks as well as reduce overfitting of the network. However, the general

behavior of the surveyed pruning methods is the same in both experiments [SLM16].

(a) Results from previous research
[SLM16].

(b) Our own results

Figure 5.1: Comparison of the results from previous research on pruning in RNNs and
our own experiments on feed-forward networks.

Optimal Brain Damage is able to compete with the magnitude class blinded method in

the first few pruning steps, but when the network contains 30,000 weights the accuracy

of the model pruned with OBD drops significantly compared to the one which is pruned

by the magnitude class blinded method. A reason for this might be that due to the

limited retraining the network has not yet reached a local minimum and therefore the

approximations that are made during the calculation of the OBD saliency are wrong and
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thus wrong weights are deleted. Nevertheless, magnitude based pruning performs very

well and the advantage over OBD even increases when you have a look at the runtime

of each of the pruning steps. While each pruning step for magnitude based pruning

requires around 60 seconds each step for OBD requires nearly 1200 seconds which is 20

times more including the two epochs of retraining. However, the saliency calculation can

be sped up significantly by implementing OBD in the core of the framework instead of

implementing it on top of it as we did [Mol+16]. Furthermore, there is also the possibility

to not calculate the diagonal of the Hessian matrix directly but to use approximation

techniques [MSS12]. The disadvantage of calculating the Hessian using approximations

is that the accuracy of the saliency diminishes. Therefore, it is very likely that this

approximated pruning method performs worse than the ones we examined. Therefore,

a trade-off between runtime and performance of the algorithm is needed.

Another reason for the better performance of OBD and magnitude class blinded pruning

compared to the other approaches is that in these first two there is only a single weight

ranking from which the weights are deleted while in other approaches for each of the

single layers a own ranking is created and then from each ranking weights are deleted

more or less independently. However, it is highly unlikely that every layer contains the

same amount of redundancies. Therefore, it actually might be necessary to test out a

pruning rate for each of the single layers in order to examine how many weights can be

deleted from this layer. Some previous research already used varying pruning rates for

different layers which might explain the performance improvement they achieved com-

pared to our results, for example in the L-OBS method [DCP17], whose implementation1

contained pruning rates between 30% and 93% in one single model with two hidden lay-

ers. However, the used pruning rates are manually selected what requires additional

manual effort. Therefore, further research is required for this case: it is not sufficient to

know that the network itself has redundancies but each layer’s redundancy needs to be

measured in order to create the best possible model.

Deleting the weights that cause the smallest change in the error function might not

always be necessary since retraining is required in nearly all cases. Therefore, if some

weights are deleted the network might have the possibility to reach another minimum

in the error function that provides a better accuracy than the previously reached one.

This is also highly depending on the initially reached minimum in the cost function.

This can be seen in the previous chapter especially in figure 4.9, where the randomly

1https://github.com/csyhhu/L-OBS
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pruned network has the highest loss initially caused by pruning, but after the retraining

the method outperforms some of the other methods.

Summarizing the previously seen results from the experiments the magnitude class

blinded method is the method that is able to create the highest performing networks in

our survey. Optimal Brain Damage is also able to create very good performing networks

which especially compete with the other ones in the first few pruning steps. However,

if we take the additional computational effort that is required in OBD into account as

well as the additional programming effort the magnitude class blinded approach clearly

wins.

The iterative pruning strategies clearly outperform the single pruning strategy. For

the iterative pruning strategies always a trade-off between runtime and performance of

the outcoming network has to be made when the pruning rate is chosen. Furthermore,

depending on the goal of the pruning the actual strategy can be chosen. Fixed number

pruning is able to create the highest performing networks and outperformed the standard

iterative pruning. However, if very high compression rates are aimed for iterative pruning

comes out ahead of fixed number pruning. However, it is also possible to change the

pruning rates in a more advanced way than we did in order to even further improve the

pruning process.

5.2 Pruning as regularization technique

As we have seen in chapter 4.3 the pruning procedure is indeed capable of reducing the

overfitting in the network and therefore is a good regularization technique. However,

the pruning comes at a very high price. While weight decay and also other L1 and L2

regularization techniques as well as Dropout can be applied during the initial training

the pruning procedure needs to be applied after a training has been finished.

Therefore, the additional effort that is required by pruning needs to be added to the

required initial training. In order to create the model that has been examined in the

previous chapter 66 pruning steps were necessary and each pruning step not only con-

sisted of a ranking of all the weights but also of two epochs of retraining. Thus, in total

132 epochs of retraining have been applied to the network during the retraining. Addi-

tionally the initial network had to be trained using 20 epochs. In contrast weight decay
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and Dropout both required less than 25 epochs in order to improve the performance of

the network. However, during the pruning process many different models are created

and thus the computational effort pays off.
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In this thesis we have seen that pruning techniques in general are capable of creating

highly compressed networks which still have a very high accuracy. Pruning techniques

are not only able to create highly compressed networks they also prevent overfitting by

deleting the redundant weights that exist in the network as previous theoretical research

has shown [Den+13]. Compared to other popular regularization methods pruning per-

forms pretty well but the required additional computations are much higher than for

other techniques. However, pruning was not tested in combination with other regular-

ization techniques.

For the examined pruning strategies there always has to be made a trade-off between a

high pruning rate which leads to a better result model and the runtime of the pruning

technique which decreases for higher pruning rates. However, the iterative pruning

techniques perform a lot better than the single pruning strategy as you would expect.

The examined pruning methods have shown they are able to find the weights which only

have a small influence on the error, but especially the more advanced methods like OBD

are computationally very expensive and do not lead to a huge advantage in the result

model compared to primitive pruning methods like the magnitude class blinded method.

Furthermore, some of the advanced methods are even too computationally expensive to

test out their performance like it is the case for OBS and require a huge amount of

additional effort to implement them. By deleting actually important weights it might

also be possible that the network is able to find a better minimum than the previous

one during retraining which is required in nearly all cases.

In the future the calculation and usage of sparse networks need to be improved and

existing methods need to be integrated. This will lead to the desired reduction in storage

and required FLOPs during the calculations. Examined algorithms like OBD need to

be implemented in a more efficient way which will lead to a huge speed-up and makes

them more usable for real-world problems. Although it has shown in both theory and
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practice that neural networks contain many redundant weights the redundancy is most

likely not distributed uniformly over the network. Therefore, it is necessary to evaluate

how much redundancy is in each layer of the network and therefrom how many weights

can be deleted from each of them.

Furthermore, pruning techniques need to be evaluated in addition to other examined

regularization techniques like weight decay and Dropout in order to improve the overall

accuracy of the generated networks. The different examined pruning techniques have

been tested on a very small network compared to the current state of the art networks for

more advanced datasets like ImageNet1. The pruning techniques need to be evaluated

on the bigger and more advanced networks in the future as well. Pure feed-forward

networks are used very rarely in modern networks and therefore pruning also has to

be evaluated on other network types like CNNs and RNNs where other techniques like

ThiNet already exist and existing methods can be expanded [LWL17].

1http://www.image-net.org/
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